
1 | P a g e

Learn Quickly Creating Professional Looking Desktop

Application Using Python2.7/wxPython, wxFormBuilder ,

Py2exe and InnoSetup

Take your ability to develop powerful applications for desktop to the next level today.

This book is the companion to my video series on

Learning GUI with Python

You may freely copy and distribute this eBook as lo ng as you do not

modify the text. You must not make any charge for t his eBook.

Author: Umar Yusuf

Tel: +2348039508010
URL: www.UmarYusuf.com

Email: umaryusuf49@gmail.com

2 | P a g e

LESSON CONTENTS

1: Introduction and overview of our app

2: Beautiful Apps created with wxPython

3: Downloading and Installation
o Python 2.x.x
o Python Libraries: wxPython, and Py2Exe
o wxFormBuilder
o InnoSetup
o Editor/IDE

4: Testing installations

5: Developing the console program

6: Sketch the App GUI (Graphical User Interface)

7: Creating GUI (Graphical User Interface)
� Setup wxformbuilder
� Create Frame Window
� Add Menu and Status bars
� Add Widgets (Buttons and TextControl)
� Define/name Widgets Methods

8: Binding Events to Methods

9: Compiling, Packaging and distributing our

 completed App

10: References

(NotePad++, SublimeText, or AptanaStudio)

(easy_install, PIP)

3 | P a g e

INTRODUCTION AND OVERVIEW OF OUR APP

My name is Umar Yusuf, am based in Nigeria, Africa. I

love to help people grow in their technical careers !

I have a passion for condensing complex topics into

accessible concepts, practical skills and ready-to-

use examples.

See more details about me here: www.UmarYusuf.com

This tutorial will show you how to design and build a

fully-functional desktop Graphical User Interface

(GUI) application for maths Expression Evaluation

using a combination of Python 2.x, wxPython,

wxFormBuilder, Py2exe and InnoSetup.

All of the above programs are free for Linux, Mac a nd

Windows. This tutorial is written with the needs of

Windows users in mind and was written on a 32-bit

operating System computer using the Windows-7

operating system. The desktop app in the tutorial w as

written and tested on the same system. The program

will also work on Mac and Linux systems which have

Python 2.7.x and compatible wxPython installed.

4 | P a g e

Though I will try to keep this simple and show

through example, some background and understanding of

the command prompt and python programming will serve

you well not only in this tutorial but in your

computing life in general.

Purpose of our Desktop App: the app we are developing

will allow user perform any of the following Valid

Mathematical Expression Operations [+, -, *, and /] –

addition, subtraction, multiplication, and division ,

that is entered.

I will use the wxWidgets library with its Python

binding (wxPython), to convert a console (command

line) program into a Graphical User Interface (GUI)

app.

CLI vs. GUI
CLI (Command Line Interface)

� Take fewer resources.

� Users have much more control of their system.

� Only need to execute few lines to perform a task.

5 | P a g e

Some GUI library for Python:

• Tkinter - Python's standard GUI package. (Tcl/Tk)

• wxPython - A Python extension module that wraps

wxWidgets library.

• PySide/PyQt - A Python binding of the cross-

platform GUI toolkit Qt.

• Kivy - a modern graphical user interface toolkit

that allows you to easily develop natural

interfaces for a wide selection of devices.

GUI (Graphical User Interface)

� Easier for user to view and

control your application.

� Ability of multitasking.

6 | P a g e

BEAUTIFUL APPS BUILT WITH WXPYTHON

Application fully or partly developed with wxPython

include the following;-

1) Task Coach – a simple to do manager to keep track

of personal task and to do list –

www.taskcoach.org

2) Bit Torrent – a peer-to-peer Torrent application

– www.bittorrent.com

3) Drop Box – a storage provider/files synchroniser

– www.dropbox.com

7 | P a g e

4) Editra – a multi-platform text editor –

www.Editra.org

5) GRASS GIS – a free Geographic Information System

software – www.grass.osgeo.org

6) Google Drive – desktop client for the Google

cloud-base storage – www.google.com/drive

8 | P a g e

7) Chandler – a personal information manager –

www.chandlerproject.org

8) Phatch – a photo batch processor –

www.photobatch.stani.be

9 | P a g e

9) GUI2Exe - is a Graphical User Interface frontend

to all the “executable builders” available for

the Python programming language –

www.gui2exe.googlecode.com

Source: www.wikipedia.org/wiki/WxPython

More Applications can be seen here:
www.wiki.wxpython.org/wxPythonPit%20Apps

10 | P a g e

DOWNLOADING AND INSTALLATION

Installing Python 2.x

Python is an easy to learn, powerful programming

language. You will find that you will be pleasantly

surprised on how easy it is to concentrate on the

solution to the problem rather than the syntax and

structure of the language you are programming in (A

Byte of Python). You can install Python on Windows by

downloading from this link: www.python.org/downloads

NOTE: Don't use Python3.x, because the wxPython
library isn't fully supported as at this writing.
Make sure you install Python 2, not Python 3.

Installing wxPython

WxPython is a free GUI toolkit which can be used to

build Python GUIs. You can install wxPython on

Windows by downloading from this link:

www.wxpython.org/download.php

11 | P a g e

Installing Py2Exe

Py2Exe is a Python Distutils extension which conver ts

python scripts into executable windows programs, ab le

to run without requiring a python installation

(Official website: www.py2exe.org). There are couple

of different ways you can install py2exe;-

A. Download from the official website www.py2exe.org

or from their source forge project page at:

www.sourceforge.net/projects/py2exe

B. You can also (unofficially) download it from this

link: www.lfd.uci.edu/~gohlke/pythonlibs

C. The third option is to use your PC command prompt

(cmd) to install it by running

This could only be possible after you have

installed easy_install and PIP which can be

gotten from option “B ” above .

pip install py2exe

12 | P a g e

Installing Text Editor/IDE

There are many text/code editors to choose from! Am

going to list some I have used, any of them you go

with is just fine.

Python IDLE: This comes with Python installation
NotePad++: www.notepad-plus-plus.org
SublimeText: www.sublimetext.com (I will use this)
AptanaStudio: www.aptana.com
PyCharm: www.jetbrains.com/pycharm

I will be using SublimeText for the tutorial.

Installing wxFormBuilder

wxFormBuilder is a free Python RAD GUI constructor

toolkit for wxWidgets GUI design which can be used to

build Python GUIs. You can install wxFormBuilder on

Windows from links below:

www.wxFormBuilder.org or

www.sourceforge.net/projects/wxformbuilder

13 | P a g e

Installing InnoSetup

Inno Setup Compiler is a free script-driven

installation system created in Delphi/Pascal dialec t

by Jordan Russell. Inno Setup is used to create

installer for Windows programs. You can install Inn o

Setup on Windows from links below:

www.innosetup.com or www.jrsoftware.org

14 | P a g e

TESTING INSTALLATIONS

Testing Python Installation

After installing Python on your windows PC, launch

your command prompt and type and hit enter.

If you didn’t get a screen similar to the one below ,

then it means python isn’t recognized.

Now, you need to add python path to the system’s

environment variable. Two options are available; -

FIRST OPTION: run this code below on your command

prompt to add python path automatically.

Python

[Environment]::SetEnvironmentVariable("Path", "$env :Path;C: \ Python27", "User")

15 | P a g e

SECOND OPTION: add python path manually as follow;

To do this,

1) Click on the start menu

2) Right-click on Computers

3) Click on Properties

4) Click on “Advance System Settings” and

“Environment Variables” under advance tab.

16 | P a g e

5) Select “Path” under System variables and click

“Edit”

17 | P a g e

The variable value field is a list of directories

separated by Semicolons (;).

Go to the end of the list and enter the directory

where python is installed after adding a Semicolon.

If you installed python on C: drive, then the

directory path should be else enter

your appropriate path, then click on “Ok” throughou t.

Open a fresh command prompt and type “ python ” hit

enter. If you have setup your path correctly, this

will open a Python Shell as shown below.

You may also add this path (although not necessary

for this tutorial)

C:\Python27

C: \ Python27 \ Scripts;C: \ Python27 \ Lib \ site - packages

18 | P a g e

Testing wxPython Installation

To test for wxpython installation, from your Python

Shell as opened from above, type hit

enter. If you see error message then your wxpython

wasn’t install properly.

Testing Py2exe Installation

Just as above, type and hit enter. If

the Python Shell displays something, then your

installation has a problem.

Type and hit enter to exit.

import wx

quit()

import py2exe

19 | P a g e

Testing Text Editor/IDE Installation

This is pretty simple, you should see an icon on yo ur

desktop or start menu representing the editor/IDE y ou

installed. You can launch the software from those

icons.

20 | P a g e

Testing wxFormBuilder Installation

Look for the icon/shortcut and launch the software.

21 | P a g e

Testing Inno Setup Compiler Installation

Just as above, check for the icon/shortcut and laun ch

the software.

22 | P a g e

DEVELOPING THE CONSOLE PROGRAM

In this section I will explain how our app

(Expression Evaluator) works on a command prompt

(knowledge of Python basics will help). We will

leverage on a powerful python function used to

evaluate maths expressions .

The complete console version of our Expression

Evaluator app is less than 15 lines of python code (I

will explain each line soon).

Now go to your desktop/any location on your PC and

create a folder name it “ EXPRESSION_EVALUATOR” then

save a python file as “ eval.py ” from your text editor

(my editor is sublimetext).

eval()

23 | P a g e

Type the following code in your eval.py file and save

it.

If you run/launch the “ eval.py ” file by double

clicking on it, you should see command prompt as

follow asking you to enter an expression.

24 | P a g e

Type a valid mathematical expression and press ente r

to see the result. If you entered an invalid

expression, the program will out an error massage.

Below I tried expressing “2+2”, and it gave me “4”

excellent!

When I tried expressing “2+a”, the console crashed

after showing an error message (which you may not

have noticed) - try it! This is because “a” isn’t a

number and isn’t defined, making the expression

invalid.

Now let’s re-run/re-launch the program in a little

bit different way from above so we can see our erro r

message if we supplied an invalid expression.

Hold “ Shift ” button on your keyboard and right-click

inside the program’s folder “ EXPRESSION_EVALUATOR”,

then select “ Open command window here ”. This will

open the command prompt directly from the folder.

25 | P a g e

Type and hit enter. You should see

screen similar to the previous one (except with the

folder’s path on the first line) asking you to enter

an expression.

Python eval.py

26 | P a g e

This time even if we entered an invalid expression

our program with never close automatically until we

decide to close it. Or better still uncomment line- 14

in eval.py file so however we ran our file it will

never close until we press enter.

Ok, let’s dive into detail explanation of each line

of code in “ eval.py ” file. If you are comfortable

with python programming basic, skip to the next

section.

27 | P a g e

Line-1:

This line is called “SheBang” or “HashBang”. It

tells python shell;-

- That the file is a script

- To use python to execute the script

- The path to the python interpreter.

Line-2

This doesn’t do anything to the code; it is left

blank to make the code easier to read by us or

other programmers.

Line-3

Here we have a print function that outs a string

onto the console. In this case, the string within

the single quote will be written on the console.

#!/usr/bin/env python

print 'Welcome to EXPRESSION EVALUATOR System.'

Nothing is here

28 | P a g e

Line-4

The same as line-3 above. But here we are telling

python to write the hyphen “-” character 40

times, to create a ruled line beneath the above

string. This is mainly for decoration.

Line-5

This doesn’t do anything to the code; it is left

blank to make the code easier to read by us or

other programmers.

Line-6

This is used to handle errors, try...except

statement block starts here. We basically put our

usual statements within the try -block and put all

our error handlers in the except -block.

try:

Nothing is here

print '-' * 40

29 | P a g e

Line-7

Here the raw_input() function is use to get user

input on the command prompt and stored in a

variable “ exp ” for further processing. This is

within the try...except , so note the indentation.

Line-8

We then pass the variable “ exp ” into the eval()

function. Then store the result in a new variable

called “ Answer ”.

Line-9

This doesn’t do anything to the code; it is left

blank to make the code easier to read by us or

other programmers.

Nothing is here

 Answer = eval(exp)

 exp = raw_input("Enter an Expression: ")

30 | P a g e

Line-10

The two variables “exp” and “ Answer ” are printed

on the console with the aid of string formatting

function.

Line-11

raw_input() function is used to allow the user to

terminate successful expression evaluation.

Line-12

 Error handlers are placed in the except -block.

Line-13

In this case the error handler in the except -

block is to use print function to output the

string above.

except:

 raw_input("Done! Press Enter to Exit")

 print "%s =" %(exp), Answer

 print 'Oops! INVALID MATHEMATICAL EXPRESSION, TRY AGAIN.'

31 | P a g e

Line-14

This is optional, if the “#” sign is removed,

raw_input() function will allow the user to

terminate an unsuccessful expression evaluation.

Line-15

This doesn’t do anything to the code; it is left

blank to make the code easier to read by us or

other programmers.

Basically these line of codes made-up the console

version of the Expression Evaluator app! And you ca n

enhance it further by allowing more Object Oriented

Programming concepts within it.

 #raw_input("Press Enter to Exit")

Nothing is here

Our next task is to convert this

code into a more user friendl y GUI

app for windows, where the user

uses elements such as button, text

input box to manipulate the app.

32 | P a g e

eval() Function
Warning! Warning!! Warning!!!

This tutorial has not had a deep look at the “ eval() ”

function. There are other features and parameters

that can be passed to this function.

Just a word of warning the “ eval() ” function can be

dangerous if you do not know what you are doing. So

in the meantime just use it for simple examples suc h

as the ones shown here.

33 | P a g e

SKETCH THE APPLICATION GUI

Here am going to use pen and paper to design how th e

interface of the Expression Evaluation app will loo k

like. I strong advise that you take this seriously,

as much of user friendliness of an app depends on

this.

I have brain stormed and came up with above simple

GUI interface for our app! It consists of four majo r

34 | P a g e

elements (widgets/control) on a window frame as

follow;

From the top I placed a “ Static Text Label ” widget to

display result of an expression. Then just below it I

placed a “ Text Input Box ” widget to collect

expression from the user. At the bottom, I placed t wo

“ Buttons ” – the left-button will evaluate the given

expression while the right-button will close the ap p

window.

These widgets/elements have technical name associat ed

with them in wxPython. For instance;-

Static Text Label = wxStaticText

Text Input Box = wxTextCtrl

Button = wxButton

Image Button = wx.BitmapButton

Image = wx.StaticBitmap

Combo Box = wx.ComboBox

Check Box = wx.CheckBox

Radio Button = wx.RadioButton

And so many widgets like so, take note of UPPER cas e

letters within the names, “wxbutton” is NOT the sam e

as “wxButton”.

35 | P a g e

CREATING GRAPHICAL USER INTERFACE-GUI

Since we know how the app interface will be and we

know the logics involved from the console version.

Then let the fun begging by creating a Professional

Looking Desktop GUI Application using wxPython GUI

library.

First step I will create a simple example of wxpyth on

app and show you the minimum code required a wxpyth on

program.

Create a python file in the project folder and name

it “ frame.py ” then enter the following code into it.

36 | P a g e

Above is the minimum code require for a window fram e

to be created using wxPython, I will explain each

line in a minute.

wxPython API consist of a set of functions and

widgets. Widgets are essential building blocks of a

GUI application. Under windows, widgets are called

controls.

In wxPython, we have lots of widgets. These can be

divided into some logical groups as follow;-

� Base widgets
� Top level widgets
� Containers
� Dynamic widgets

37 | P a g e

� Static widgets
� Other widgets

EXPLAINING THE CODE

In every wxPython application, we must import wx

library

We created an application object by initiating clas s

wx.App

We create the frame widgets and use the “ Show() ”

method to show the window frame. The frame widgets

took in some parameter namely; parent (None), ID (-

1), then the frame’s title (‘My first Window App’).

All the parameters are separated by comma as seen

above.

38 | P a g e

On the last line, we call the MainLoop() on our app

object. The MainLoop is an endless cycle that catch es

up all events coming up to your application. It is an

integral part of any windows GUI application.

If you run the file “ frame.py ” you should see a

window/frame appear on your screen as shown

below;

Although the code is very simple, you can hardcode a

lot more widgets such as button, text boxes, combo

boxes, etc onto the frame. But don’t worry about th at

39 | P a g e

now as am going to introduce you a powerful wxPytho n

code builder called wxFormBuilder.

With wxFormBuilder, you can easily create a more

complex frame than the one above on the fly. All yo u

do is to use available widgets in it to get going, so

you need not to worry about the GUI interface much

instead you focus more on the program’s logics and

functionality.

Let’s get started with wxFormBuilder by creating th e

GUI interface for our Expression Evaluator App!

Now create a subfolder in the main project folder ()

and call it “GUI”, that is where we will save all

files associated with wxFormBuilder.

Launch wxFormBuilder and save it as “ Eval_Project ” in

the “GUI” folder.

40 | P a g e

On the right hand side, you will see “ Object

Properties ”, under the “ Properties ” tab set the

Project name to “EvalProject”, set the file name to

“gui” (this is the name for the generated python

file) and set “code generation” to python.

41 | P a g e

Note that we only change/set three elements on our

project as seen above in red arrows, these elements

are;

Name = which is the project name, “EvalProject”

File = which is the name of the code file that will

be generated, “gui”

Code_generation = which is the programming language

code you want to generate, “Python” in this case.

You may generate for C++, PHP, Lua, or XRC

Under the “ Form” tab in the designer view, create a

frame and set its size to 250 -Width by 300 -

Height.

Note the name of the frame is “MyFrame1”. This name

will be used for our frame object class.

42 | P a g e

Switch to the “Layout” tab and add a “wxBoxSizer”,

leave the orient property on wxVERTICAL.

It is important to note here, that there two method s

of widgets layout management in wxpython namely;

1) Using Coordinates - position of widgets are

defined in terms of x, y coordinates

2) Using Sizers - Sizers are layout managers, they

are used prevalently in complex layout programs

Let’s add the remaining widgets to our frame.

43 | P a g e

Under the “ Common” tab, select “wxStaticText” then

EXPAND and STRETCH it by clicking on the respective

icons on the toolbar (see screen shot below).

On the object property, set the “wxStaticText” as

follow;-

Name to “DisplayResult”

Style to wxALIGN_CENTRE

Label to “DisplayResult”

Font point size to 20

44 | P a g e

Add the next widgets on our sketch, which is a Text

box (“ TextCtrl” as its being called in wxPython).

Then EXPAND and STRETCH it as we did above for

“wxStaticText”.

On the object property, set the “wxTextCtrl” as

follow;-

Name to “EnterExpression”

Style to “wxTE_CENTRE”

Font point size to 20

45 | P a g e

The last two widgets on our sketch are the two

buttons (Evaluate and Close buttons).

Add the first “wxButton” (Evaluate button), then

EXPAND and STRETCH it as we did above for

“wxTextCtrl”

On the object property, set the “wxButton” as

follow;-

Name to “Button1”

Label to “Evaluate”

Font point size to 20

Repeat this process for the second button (Close

button); remember to change the name appropriately.

46 | P a g e

Boom! We are done with our GUI design, now save you

work and generate the python code. Check your proje ct

folder, you should see a file named “ gui.py ” that is

the file containing wxpython code for our program’s

GUI.

47 | P a g e

If you run/launch the GUI file (“ gui.py ”) nothing

will show, this is because wxFormBuilder doesn’t

create the wxPython app MainLoop() method by default

so we need to edit the file manually using our text

editor.

Open “ gui.py ” file in your text editor and type the

minimum required wxpython code at the end of the

file. See the code below;-

48 | P a g e

Note: that “MyFrame1” is the name of our Main Frame

class. The code above has been explained in the

previous section.

If you have followed the tutorial correctly to this

point, running/launching “ gui.py ” file should present

something similar to the screen below;

Wow! That’s our GUI in work...

At the moment, our app is dormant (it doesn’t

evaluate anything). This is because we have not

binded the widgets events to methods/functions.

49 | P a g e

OVERRIDE
Warning! Warning!! Warning!!!

Since we have edited the generated code

file “ gui.py ”, if we regenerate the file

from wxFormBuilder it will overwrite the

changes we made.

So anytime you regenerate the “ gui.py ”

file, make sure you re-edit it to place

back the code you hardcoded in.

A perfect solution to this problem is to

create a separate file that will contain

another subclass to handle the execution

of the “gui.py” file. This is good for

complex programs.

For this tutorial, we will maintain just

a file since our app is quite a simple

one. That is our “gui.py” file will

handle both GUI and logic codes.

50 | P a g e

BINDING EVENTS TO METHODS

Events are part of every GUI application. All GUI

applications are event-driven. An application react s

to different event types which are generated during

its life. Events are generated mainly by the user o f

an application.

Working with events is straightforward in wxPython.

There are three steps:

 Identify the event name

 Create an event handler. This is a method that is

called when an event is generated

 Bind an event to an event handler

In wxPython we say bind a method to an event.

Sometimes the word hook is used.

There are different types of events to different

wxWidgets. For our expression Evaluator App, we wil l

use only on event type called “OnButtonClick”. This

event is generated when a user clicks on a button.

Let’s hook our buttons to event handler by followin g

the steps above;-

51 | P a g e

 Identifying the event name

From our project (Eval_Project) in wxFormBuilder,

select button1 (that’s Evaluate button) and the go to

“Object Properties” panel then select “Events” tab,

you should see “OnButtonClick” event.

Type in the name of the event handler, I named mine

“ EvaluateFunc ” (it can be any name meaningful).

Do the same for button2 (that’s Close button), name

it “CloseFunc”.

Now regenerate the code file “ gui.py ” and open it in

a text editor. Scrolling down, you should see this

52 | P a g e

screen below;- Note: you have to retype the code that creates

the wxPython app MainLoop(), for your “gui.py” to o pen the frame.

 Create an event handler; this is a method that is

called when an event is generated.

The event handler names we defined for our buttons

above, that’s (“ EvaluateFunc ” and “CloseFunc”) are

names for the functions or methods that are called

when an “OnButtonClick” event is generated.

To create the “ EvaluateFunc ” function for the first

button, override the event handler functions, by

replacing the “ event.Skip() ” methods with the code

that does whatever you want the buttons to do.

53 | P a g e

We want the first button to evaluate an entered

expression in the “EnterExpression” text box, so we

will write a code for doing just that within the

function.

As for the second button, we want it to close the

frame so we will write a code that too inside the

function.

Hence, the codes within our (“ EvaluateFunc ” and

“CloseFunc”) function should look like the screen

below;-

54 | P a g e

Let’s not forget to retype the code that creates th e

wxPython app MainLoop() for our “gui.py” file to

launch the GUI. So the final code in “gui.py” towar d

the bottom of the file should look like this;-

Now, our Expression Evaluator App should work as

expected if we entered a valid expression and click ed

“Evaluate” button. If an invalid expression is

entered, error report is printed out.

55 | P a g e

 Bind an event to an event handler

wxFormBuilder does this step automatically for us, so

we don’t need to worry about it. But had it been we

are typing our GUI code manually, then we will use

the Bind() method of wxPython to accomplish this

step.

Congrats!
That is it; our Expression Evaluator Application is

now ready for packaging and distribution. Before we

compile and package our program, let me explain the

code within the two button functions (EvaluateFunc,

and CloseFunc).

56 | P a g e

The first function “EvaluateFunc”, which is the eve nt

handler for the first button (button1), uses the

try...except block to enter expression and evaluate

it using the eval() function.

From the code above, we defined the “EvaluateFunc”

function then within the try..except block a variable

“ exp ” is use to get/store the entered expression

using wxpython GetValue() method. Then another

variable “Result” is used to store the evaluated

expression after converting it to string using str()

method. We then displayed the “Result” variable on

the “ DisplayResult ” static text with help of

SetLabel() method.

At the end of the try..except block, we set the

“ DisplayResult ” static text to an error message if an

invalid expression is entered.

57 | P a g e

For the second function “CloseFunc”, this is the

event handler for the second button (button2). The

code is pretty simple as seen.

We defined the “CloseFunc” function then call the

Close() method used for closing windows’ frame in

wxpython.

Now let’s talk about compiling, packaging and

distributing our Expression Evaluator Application.

58 | P a g e

COMPILING, PACKAGING AND DISTRIBUTING

OUR COMPLETED APP

Am glad you read this far, we are almost there!

For sure, we can zip the “gui.py” file and distribu te

it by emails or other means. But the problem with

this is that only users with Python and wxPython

installed on their PC can run the application (so w e

have a drawback).

The aim of this section is to take our application to

the next level by making it possible for every

computer system to run it. To achieve this, we make

use of two programs we installed earlier (Py2exe an d

Inno Setup Compiler).

First we use the Py2exe python library to create an

executable for our application.

59 | P a g e

Create a blank file name “setup.py” and type this

code below in it.

Run the following code on the

command prompt to create an executable for our app.

This will run and generate to folders named “build”

and “dist” in our project folder. Open the “dist”

folder, the app executable will be seen there and t he

“build” folder is no longer essential.

Python setup.py py2exe

60 | P a g e

Contents of your “dist” folder should look like min e

below;- the executable file is shown with arrow.

Double clicking the executable file should open up

the Expression Evaluator Application, BOOM!

61 | P a g e

Now we can rename the “dist” folder to something we

want (name of our app) and zip it for distribution

with others. Any PC would be able to run our

application with or without Python/wxPython install ed

on the computer.

To more professionalism to our program, we will

compile it into an installer using the Inno Setup

Compiler.

Launch the Inno Setup Compiler and chose “create a

new script file using wizard” and click “Ok”.

62 | P a g e

On the next couple of screen press “Next” and file

the appropriate details asked.

63 | P a g e

On the “Application file” window, click “Browse” th en

navigate to the “dist” folder and select the

executable file (gui.exe).

64 | P a g e

Click on “Add files” button to add all the files

within the “dist” folder

On the next window chose option that suite your

needs. I will accept default options and go to next

“Application documentation” then select your setup

language.

On the “Compiler settings” window, you can select a n

icon for the installer setup file and you can also

set password for the installer.

65 | P a g e

Select “Yes” when you see the screen below to compi le

instantly.

66 | P a g e

Save your script and inno setup compiler does its

thing... This script can be edited using

Delphi/Pascal dialect programming language.

When it finishes, go to the folder you selected for

the setup output to see the installer created by in no

setup compiler placed in a folder named “output”.

67 | P a g e

This setup can now be distributed for installation on

window PCs that doesn’t have python installed.

Our application is now more professional. We can ru n

the installer to install the Expression evaluator

program on a computer system.

68 | P a g e

69 | P a g e

After installing it, check the windows start panel,

or desktop (if you enabled this option) to see your

need app as show above. An icon to the software wil l

also be available in the system’s control panel for

un-installation.

This mark the end to this tutorial, hope you enjoye d

reading it?

This ebook is not meant to be an exhaustive study o n

making desktop GUI application with Python, nor

should it be only reference. There are literally

hundreds of explanations online, so if you didn’t

find this one suitable, certainly a bit of searchin g

will reveal one better suited to you.

However, you can still learn to develop more comple x

applications and more tricks in using wxPython by

getting more video lessons from this link:

www.umaryusuf.com/wxpy

Warm regards!

Author: Umar Yusuf
Tel: +2348039508010
URL: www.UmarYusuf.com
Email: umaryusuf49@gmail.com

70 | P a g e

REFERENCES

a) www.python.org

b) www.wxpython.org/docs/api

c) www.wxwidgets.org/docs

d) www.xoomer.virgilio.it/infinity77/wxPython/index.ht ml

e) www.daniweb.com/software-

development/python/threads/128350/starting-wxpython -

gui-code

f) www.zetcode.com/wxpython

g) www.wiki.wxpython.org/AnotherTutorial

h) www.wiki.wxpython.org/FrontPage

i) www.wxformbuilder.com

j) www.py2exe.org

k) www.innosetup.com

l) www.remobjects.com/ps

m) www.Py2Exe.org

n) www.jrsoftware.org

o) www.swaroopch.com

